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Abstract

The effects of acoustic coupling between radiators is tnvestigated
for linear and planar acoustic arrays. To provide a stinple model for
calculation and inversion of the acoustic impedance matrices, spherical
radiators are chosen. Considerations of total radiated beam power
are addressed. The principal effect of element interaction on array
performaice found is in the effective impedance of individual radiators

i the array.
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1 INTRODUCTION

In this note we address some questions related to acoustic coupling be-
tween transmitting elements in an acoustic array. We shall be primarily
concerned with elements of characteristic size a that are small compared
with the acoustic wavelength A:

a <&M (1-1)

We shall also suppose that the array is operated in a linear acoustic regime.
This will be interpreted as implying that the acoustic pressure p(a) at the
transducer is less than pcav, that at which cavitation occurs:

p(a) < pcav- (1-2)

The array is assumed to have N, radiators with phase centers at locations
x;(1 = 1,...N;) in the neighborhood of the origin of a rectangular coordi-
nate system. Taking advantage of condition Equation (1-1) we compromise
slightly on generality by assuming spherical radiators of radius a that are
driven in a spherically symmetric mode. Then the acoustic pressure at a
distance R; from the ith element is

pi(r) = pi(a)(a/R)e* 2, (1-3)

where
R, =r —x;.

Since we have assumed a linear system, the total acoustic pressure at r is

Nr
p(r) = pi(7). (1-41)
1=1
In the far field of the array we can write this as
p(r) = po(a/R)e* N D(t), (1-5)

where, to within an unimportant phase factor,

/Vr

D(#) = S (p(a)/p,)e X (1 = 6)

1=1

|

e ———————————————————— e




and, say,

Po= 3 Ipi(@)| V.. (1-7)

The maximum radiated beam power will occur in a given direction r when
the phases of the p;(a) are adjusted so that

D(l‘) = er.
In this case the maximum radiated power/unit solid angle is
Pocam = rIpI*/(2p¢) (1-8)
a?p?
—f2NZ
20¢ B
[Here p = 1000 kg/m® and ¢ = 1500 m/s is the speed of sound.]

The total radiated power is

Ip(r)® ,
P =/ ) (1-9)
where the integral is over all solid angles 2 . We obtain
dra? [
Frad 2pc {le’i(a)P (1-10)
= =1

Of special interest is a linear or planar array for which the radiated beam
is “broadside,” or r-x; = 0. Then, if maximum beam power is desired the
driving phases will be equal, so

, 47."(1.2 Ny \
Prad = —5— {2 Ipi(a)l (1-11)
<PC iz

+ Z‘Pi(a)llpj(a)ﬁ_i_“[ﬂ’&__xj']

1#)

}.

klxi_le

When high beam power is the objective, the sccond term i Equation

(1-10) is not of great significance (see Section 2) and we have

~ Ama?
Prad = 550 2 lpda)f (1-12)
S 17.'(1"' \r (PEB\)
2pe




For purposes of illustration, we shall take
Peav/(2pc) = 13KW/m?, (1-13)

SO

P

r

ad £ 4’ Noz[I3BKW/m?). (1 - 14)

Returning to Equation (1-8), we conclude that

Ppeam < a*N2z[13BKW/m?). (1 -15)

The bounds in Equations (1-12) and (1-15) on the total radiated power
[see the clarification in Section 2] and on the beam power/steradian appear to
be fundamental for simple arrays operating in a linear regime. The quadratic
dependence on element radius indicates the price which is paid in total radi-
ated energy in exchange for the price saved with small radiators.

Cur argument docs not bound radiators working in a nonlinear regime or

radiators placed near reflectors, baifies, etc.

In Section 2 we examine the role of the second term in Equations (1-10)
and (1-11). In Section 3 we investigate the performance of an array when

close acoustic coupling between radiating elementis obtains.




2 THE TOTAL RADIATED POWER

In this Section we consider the effect of element displacement in changing
the total radiated power in an array. For a linear or planar array with
broadside steering we can replace Equation (1-11) by

1 sin[k]x; — x;|]
Pr=1+ Y T X 21
+N,§ x| (2-1)

dropping multiplicative factors.

First we consider a linear array with A/2 element spacing. Then P’ = 1.
Evidently, we can maximize Equation (2-1) by setting all the x; equal. Then
P’ = N,, but we have no beam forming! Various more restrictive algorithms
have been tried, none of which increase beam power [consistent with Equation
(1-8)). We illustrate this for a 10 element array and a simple algorithm that
holds fixed the first and last elemerits at positions 0 and 4.5 (we shall scale
all lengths in units of A/2). The remaining 8 elements are sequentially moved
between neighbors to maximize P’, but constrained so no two elements can
be closer than 1/8. Starting with an element spacing of 1/2 and P’ =1, the
algorithm converged in a few iterations to the spacing shown in Figure 1 and

P’ =257, (2 —2)

The resulting beam pattern is shown in Figure 2. The extra radiated energy
is fed into sidelobes, as might have been anticipated from Equation (1-8).

As a second example we consider a square array of 5 rows, each having
5 elements. The spacing of rows and clements is 1/2 (i.e. A/2). For this 25
element array,

P’ =1.01. (2-3)

With sequential moving of elements between neighbors and rows between
rows (holding boundaries fixed and permitting no clements or rows to be
closer than 1/8) we are led to the element positions shown in Figure 3 and

P’ = 1.45.

Again, this extra radiated energy has gone into sidelobes rather than

beam power.

-t




Mean Spacing = 1/2 Lambda
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Element Positions
|

Element Number

Figure 1 Element spacing for a 10 element linear array to maximize the radiated power (2.1).
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Figure 2 Beam pattern for the array snown in Figure (1).
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Figure 3 Element spacing to maximize (2.1) for a 25 element square array.




3 ACOUSTIC COUPLING WITHIN AN AR-
RAY

In this Section we look in somne detail at the beam forming mechanism
for our simple model of N, identical spherical radiators in a linear or planar
array. The radius of a radiator is a + (, where

¢ = w, the surface velocity (3-1)

and
(| < a.

We also assume simple harmonic radiation:

w=V e (3 -2)
Then the acoustic pressure at the radiator surface is

pla) = Zw (3-3)

where

Z = pckaf(ka + 1) (3 —4)

is the acoustic unpedance. In obtaining Equation (3-3) we have used the
relation

dp/dr = twpw

and Equation (1-3).

For the array of IV, elements the average pressure at the surface of element

s N
pila) =3 Z,w, (3 ~5)
=1
where
w, =V, e (3 =)

The average pressure in Eqguation (3-3) 1s defired as
ge g |

pla)y = pLr) dS (3-7)
J Ara?

Y




where the integration extends over the spherical element surface.  Using
LEquations (1-3).(3-3), and (3-7) we obtain

sin(ha)

7= 7_1(,;‘1\'(1:.,-“)
/., = /.
! ka

3 —8)
i1, (
We note at this point that the relation Fquation (3-3) neglects scattering
of radiation by the radiators. This scattering is dependent on the specific
array geometry and is expected to be small for small radiators. For the
sphere ¢ and radiation from j we have [see M. Junger and D. Feit, Sound.
Structures and Their Interactions. MIT Press, 1986]
) Lo ISares N Ly
lfzmttuul ~ (ka)(a/R,). (3= 9)
Pradiated

At any rate, we shall neglect sound scattering within the array.
The equations for driving the array surface are assunied to have the form
Mu; + a w; = F; — p,(a). (3 = 10)

Here M s a mass and o 1s a damping constant characterizing the radiators,
and

Fo=f,

On substituting Equation (3-5) into Fquation (3-10) and removing the time

dependent factors, we obtain

[—iw M t+a+Z)Vi=f-> Z,V. (3 -11)
i#0

Now. the Im(Z) represents a mass of water and the Re(z) radiation damping.

SO We may write

ira’p
- ) = M, = ———5— 3-12
Im(7) \/ Fa)?+ 1 ( )
R(Z) = w(ka)M,.

Thus. we can re-write Fquation (3-11) as

TR A L = A A (3 - 13)

1)




Here

M, = M+ M, (3-14)
a. = a+w(ka)M,

olyag + (k)M

and we have introduced the “Q” of the radiator:

B Mw
T 4ra’

(3 - 15)

The pressure at great distances from the array is

( )Zexp[zk .~ )V (3 - 16)

It is convenient to write
fi = file™ (3-17)
Vi = [Vile*.
To steer a beam in the horizontal direction (from broadside) 8, we set
¢; = kx;sind,. (3 —-18)

The power input to the array is (for T <« w™!)

P = %/()T{Z'ﬂwi}dt (3-19)
= ST VillS lcos(a; — €)/2

and the total power radiated is

wM
Prad = 5_: Vil*. (3 — 20)

The radiated power in the beam/unit solid angle is obtained using Equations

(1-5) and (3-16)

r¥fp(r)?
200

(3 -21)

/ beam —

1




For an array for which acoustic coupling can be neglected we use Equation
(3-18) and set [V = V4. a'l &. Then from Equation (3-13) we find

fi = [—iwM, + a]V, . (3 —22)

These driving forces, with the phases defined by Equation (3-18), will be used
as "standard” in Equation (3-13) when we are interested in the coupling.

For numerical illustration we shall consider two arrays. The first is an
array of 3 rows each having 7 clements in a horizontal line. The second array
has 5 rows each having 5 elements in a horizontal line. Half wavelength

spacing is assumed in both arrays. We shall further take
Q=02 My =M, and w = 628. (3 —23)

With Equation (3-22) as the specified driving force, we can solve the coupled
cquations, Equation (3-13) for the element surface velocities V; . The far
field pressure is finally obtained from Equation (3-16). We emphasize that
for all calculations shown here the driving forces are obtained from Equation
(3-22) with the phases set by Equation (3-18).

We first consider radiation from the 7x 3 element array when the elements
are uncoupled [ i.e., Z;; = 0 for 7 # j in Equation (3-23)]. For broadside
steering (i.e. 8, = 0) the radiated intensity as a function of observation angle
# (in the horizontal plane and measured from 6, is shown in Figurc 4. The
intensity as shown is

1(0) = 10log(|D2/N?), (3 = 24)

where D is given by (1-6). In Figures 5 through 8 we show the radiated
intensity obtained from coupled clements using Equation (3-13). These are

shown for different radiator scaled sizes:
dia = da/\. (3 = 25)
In Figures 9 and 10 we show the radiated intensity for 0, = 30°.

In the next series of figures, we show the corresponding radiated power

from the 5 x 5 array.

In looking at these figures, we note that increasing the couphing strength

(1.e.. the element radins o) reduces the effective aconstic impedanee and

|




Acoustic Array Intensity 7x3 Elements: Uncoupled
10

| l !

o)
T
: ‘\
(%]
=
i)
£ -20
°
2
gL

-30

-40

-
Steering Angle = 0 degrees
o 1 1 1 |
-30 -15 0 15

Observation Angle (degrees)

Figure 4 The radiated power (3.24) for the 7x3 array as a function of horizontel angle when the
steering angle Osz 0.
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Figure 5 The 7x3 array radiated power for coupled elements. GS:O, and an element diameter of 0.38.
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Figure 6 The radiated power, as in Figure (5), but for an element diameter 0.64.




Acoustic Array Intensity 7x3 Elements: Coupled
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Figure 7 The radiated power, as in Figure (5), but for an element diameter 0.89.
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Figure 8 The radiated power, as in Figure (5), but for an element diameter 0.96.
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Figure 9 The radiated power, as in Figure (4), but for 8¢ =30°.
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Figure 10 The radiated power, as in Figure (5), but for 0g = 30".
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Acoustic Array Intensity 5x5 Elements: Uncoupled
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Figure 11 The radiated power (3.24) for the 5x5 array as a function of horizontal angle when the
steering angle 0¢=0 and the elements are uncoupled.




Acoustic Array Intensity 5x5 Elements: Coupled
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Figure 12 The 5x5 array radiated power for coupled elements, 64=0, and an clement diameter of 0.38.
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Figure 13 The radiated power, as in Figure (12), but for an element diameter 0.64.
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Acoustic Array Intensity 5x5 Elements: Coupled
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Figure 14 The radiated power, as in Figure (12), but for an element diameter 0.89.
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Figure 15 The radiated power, as in Figure (12), but for an element diameter 0.96.




Acoustic Array Intensity 5x5 Elements: Uncoupled
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Figure 16 The radiated power, as in Figure (11), but for 65 = 30°.
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Figure 17 The radiated power. as in Figure (12), but for 85 =30".
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Figure 18 The radiated power, as in Figure (15), but for 8¢ = 30°.
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Acoustic Array Intensity 5x5 Elements: Coupled
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Figure 19 The largest element excitation (3.26), normalized to that for the uncoupled system,
is shown as a function of element diameter.
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increases the radiated power (holding fixed the driving forces). This is illus-

trated m Figure 19 where the largest element excitation

[V [Pmax

Tf =20

15 shown as a function of the element diameter. The corresponding beam
power is shown i Figure 20. Perhaps the most obvious effect of beam cou-
phng i1s to reduce the minimum radiated power between beam lobes-a not

surprising result, as this results from a delicate balance of phases.

For a linear array. the cffects of element coupling can in principle be com-
pensated for by adjusting the driving forces f;. The practical consequences

of coupling for beamforming do not seem to be very great. however.
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